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This paper examines the problem of inversion of the Lagrange theorem in hydrodynamics. 
The essence of the problem is proving the instability of the position of equilibrium (rest) 
of a mechanical system in the absence of a potential energy minimum in the system [1-4]. 
Linear problems of stability of the equilibrium of ideal incompressible and compressible 
fluids are examined, and allowance is made for factors such as capillarity, density or en- 
tropy stratification, and rotation. The result consists of a priori estimates of the solu- 
tions of these problems which provide evidence of the growth over time of the functional 
M - the mean square of the Lagrangian displacements of the fluid particles. The character 
of the increase in M is exponential, with an increment which is simply calculated from the 
initial data of the problem. To illustrate the degree of generality of the approach being 
used, we make an estimate.of the increase in M in a problem concerning the stability of the 
equilibrium of an anisotropic elastic body. 

The proposed method of obtaining results on instability is a variant of the direct method 
of Lyapunov. The principle difficulty of the latter is finding the specific form of the 
Lyapunov functional - which increases by virtue of the equations of motion of the system. 
The functional M used in the present study was introduced in [4] for probiems concerning 
the stability of bodies with fluid-containing cavities and for elastic bodies in [5, 
6]. The authors of [4-6] obtained the estimate dM/dt > ct with the constant c > 0. 

I. Ideal Incompressible Stratified Capillary Fluid. We are examining three-dimension- 
al motions of an ideal incompressible fluid of nonuniform density. The motions take place 
in an external body-force field. The fluid as a whole occupies the region ~ with a fixed 
boundary ST. The fluid surface F divided the region T into two parts: ~+ and T-. In each 
of these parts, the field of density p is continuous, while on F itself there is a density 
discontinuity [p] ~ p+ - p-. Motion in the region ~• is described by the equations 

9 D u ~ _  op O0 D p = O ,  ~ 

w h e r e  x = ( x z ,  x= ,  x a )  a r e  C a r t e s i a n  c o o r d i n a t e s ;  u = ( u l ,  u= ,  u a )  a n d  p a r e  t h e  v e l o c i t y  
a n d  p r e s s u r e  f i e l d s ;  t h e  s i g n s  • o f  t h e  s o u g h t  f u n c t i o n s  w i l l  b e  d r o p p e d ;  ~ = ~ ( x )  i s  t h e  
potential of the external field of body forces. Summation is performed over repeating vec- 
tor indices. The following impermeability condition is imposed on ~T: 

u.n = 0 ( 1 . 2 )  

(n is an external normal to ~). On the fluid surface F, given by the equation F(x, t) = 0, 
the following kinematic and dynamic conditions are satisfied: 

dF/dt = O, [p] ~ p+ - -  p -  = --a(k~ + k2). ( 1 ~  

Here, o is the constant value of surface tension; k~ and k 2 are the curvatures of the prin- 
cipal normal sections of the surface F (each of which is assumed to be positive if the cor- 
responding normal section is convex in the direction of the region T+). On the line ~ of 
intersection of the surfaces 8T and F, we impose the Dupre-Young condition [4, 7] 

ffcos ~ = ~- -- o + (1.4) 

where e is the contact angle; o- and o + are the constant values of surface tension on ~+ 
and 8~-. We use 8~ • to designate those parts on which the curve y divides the solid sur- 
face ~. The initial data for (1.1)-(1.4) is given in the form 

p(x, o ) =  pO(x), u(x, o ) =  u~ F(x, O)=  FO(x) ( 1 . 5 )  
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with obvious restrictions on the functions u~ a~d F0:(x). 4!i ~ ~hg 2ung~9~s uw here 
are assumed to be continuous, ~s at@ their derivatives i n the equations of motio~ and the 
boundary conditions. Energy is conserved in the solutions of problem (1.1)-(1.5) 

(Ir I and Ida• I 

form 

dE~/dt = 0, E~ = K~ + H~ = coast, 

2 K ~ - . f p u ~ u ~ d ~  , d ~ - - - d x f l x f l x ~ ,  
( i .6) 

ff~l OT--I 

are the areas of the corresponding surfaces). 

The states of hydr0stat$c equilibrium are the solutions of problem (1.1)-(1.5) in the 

u---~O, p =  po(x), p = p o ( x ) ,  ] ~_ 

Vpo = •  ova , • Vr = ol v ,  
[po] = --~(#~ + k~,), [Oo1 ~ o on ro (1.7) 

(r 0 is the e~uilibrium surface of the density discontinuity separating the region x into 
the parts ~o-)i . . . . . . . . . . . . . . . . .  " . . . . . . . . . . .  

Linearization of the relations of problem (!.i)-(1.5) for solution (1.7) gives 

~oU~ ~ o~ P ~ '  
Opo - Ou~ in q;' 

~, + ~ , ~ - o ,  ~ , - 0  

[u. ~] = O, N~ = ~. q, !] 1 
[ p ] = ~ ( a N - - A N ) ,  a ~  [9~ ~ on ro, 

o av k i - -  k " 

c)N k cos a -- 
a--~ + ~ N =  O, %~- sin~z on To, u . n = O  on 0~. 

(1.8) 

Here, U, P, and 0 are fields of perturbations of velocity, pressure, and density, with the 
signs• and primes [distinguishing the perturbation fields from the complete solutions (i.i)] 
omitted; v is a unit normal to r0, directed from z+ to z_; %#/8~ ~ vW~; N is the displace- 
ment of the fluid surface r along the norms! to r0; A is Be!tr@mi~s second differential param- 
eter [8, p. 190]; k and k are the curvature s of the n0rmal section s of the surface r 0 and 
3~ along the directions e and e~ ; the unit vectors e @n d ca, in turn, are normal to the unper- 
turbed position of the wetting line x0 and lie in planes tangent to the surfaces r 0 (in the 
direction from r 0) and to 8~ (in the direction from ~0+), respectively; 3N/3e is the deriva- 
tive of N in the direction e- When p0 + = coDst,~p0 ~ m 0, EQS. (!.8) coincide with the rela- 
tions presented in [7]. In a linear appr0ximation ~ initial data (1.5) reduces to the form 

p(x, 0) = p,(x), ~(x, 0) = u~ N(x, 0) = N~ ( l . 9 )  

The f o l l o w i n g  a n a l o g  o f  t h e  e n e r g y  i n t e g r a l  i s  v a l i d  f o r  s o l u t i o n s  o f  i n i t i a l  b o u n d a r y - v a l u e  
p rob lem ( 1 . 8 ) - ( 1 . 9 )  

E ~ K ~ I I = c o n s L  I I ~ [ I ~ +  H~, 

~ {aN ~ + v ( x , N ) l d S +  xN~dh 
0 " 

ro Vo 

(1.10) 

in which V(N, N) is Beltrami's first differential parameter [8]; the derivatives #'(P0) ~ 
d~/dp0 = V~/Vg0 has the meaning in the regions ~0• by Virtue of equ~!ibrium conditions (1.7) 
if VP0 ~ 0. By the integral over x in (i/I0) we mean the sum of the integrals over c0 + and 
T o - It should be noted that the expression for H o coincides with that presented in [7, 9, I0]. 
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If VP0 = 0 somewhere in c0 • then the functional Hp in (i.i0) loses meaning. To exclude 
the singularity that would occur in this case in the integrand, we must restrict ourselves 
to examining a narrower class of motions in which the perturbations of fluid-particle den- 
sity (the Lagrangian of the density perturbation) are equal to zero. In other words, the 
density of each fluid particle does not change during perturbations. The perturbations con- 
sist only of displacements of the particles from the equilibrium position. This class of 
motions is most simply described by means of the Lagrangian displacements $(x, t) [Ii], for 
which the following relations are satisfied: 

i t = u ,  dive=O,  P = - - ( t ' V )  P0 inX#, 
N = t . v ,  { t -v ]=O onro, 

~ . n = O  on 0"~. 
( 1 o l i )  

All of the equalities (1.8) in the terms $ are rewritten in an obvious manner. The initial 
data (1.9) are replaced for (1.8), (i.ii) by the following: 

~(x, 0)= t~ u(x, O)= it(x, O)= u~ 
The f u n c t i o n a l  Hp f r o m  ( 1 . 1 0 )  f o r  t h i s  c l a s s  o f  m o t i o n s  t a k e s  t h e  f o r m  

T 

b - -  - V p o . V , V ,  N~ - -  t - v ~ / l v ~ i ,  

(1.12) 

(1.13)  

while the functionals K and H o (i.i0) remain as before. 

If the condition ~ e 0 is satisfied for all fields ~, then stability by the linear ap- 
proximation follows from the equality E(t) = E(0) (i.i0). In this approach, it is necessary 
to determine stability in regard to some of the variables [12]. The reason for this is that 
E includes only the components of the displacements N, NI, and ~ •165 not the complete vec- 
tor ~. For an ideal fluid, no results have yet been obtained on stability in the norm of 
any definite function space ~(x). 

Confirmation of the stability of state (1.7) at H e 0 comes from one of the forms of 
the Lagrangian theorem [1-7] which links the fact of the stability of the state of rest with 
the presence of a potential energy minimum in this state. Indeed, as in [4, 7, 9, I0], it 
can be shown that the second variation 62Hi of potential energy (1o6), written in the approp- 
riate notation, coincides with the functional H (i.i0), (1.13). Here, 6H l = 0 by virtue 
of equilibrium conditions (1.7). Simultaneously with stability (1.7), by the linear approxi- 
mation we can also expect nonlinear stability. However, its determination requires special 
definitions and proofs [i, 4, 7, 13-15]. 

2. Direct Lyapunov Method in the Proof of Instability. The goal of the subsequent 
exposition is to obtain an inversion of the Lagrangian theorem, i.e., to prove the instabil- 
ity of the state of equilibrium (1.7) in the absence of a minimum of potential energy H i 
(1.6) or H (i.i0), (1.13) in this state. In terms of Lagrangiandisplacements ~, this means 
that there exists a field t = ~*(x) for which 

= II* < 0 a t  ~ = ~*(x). ( 2 o l )  

For other fields ~(x), inequality (2.1) can be replaced by its opposite, i.e., state (1.7) 
is an infinite-dimensional analog of the "saddle" point of functionals H I and H. Condition 
(2.1) is satisfied if Hp < 0 and (or) H o < 0 (i. I0), (i.13). The inequality Hp < 0 means 
that the density P0 increases "upward"somewhere in ~ (Vp0.v~ > 0), while H o < 0 reflects 
the more complex balance of the effects of surface tension and the density discontinuity 
on F 0. As is known [7], even in a situation where a heavier fluid is "on top" ([p0]v.V~ < 
0), the functional H o can be positively determined. Conversely, it is possible to have cases 
in which the heavy fluid is below [P0]V'V~ > 0]. For this case, we have perturbations with 
~o < O. 

To demonstrate instability, we introduce the functionals 
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M--~ .,("vo=*~:~'d'r' W ~- 2~I/2 = ~ 9oUi~d'r, ( 2 . 2 )  

where the superimposed dot denotes a derivative with respect to time. The integrals over 
T, as previously, mean the sum of the integrals over c0 • Functionals of the type (2.2) 
were first used to prove the instability of solids with fluid-containing cavities in [4]. 
Using (1.8)-(1.13), we can obtain 

~I = 2I'9 = 4(K - -  H) = 8K --  4E. ( 2 . 3 )  

In  d e r i v i n g  ( 2 . 3 ) ,  we a l s o  used  t h e  g e n e r a l i z e d  Green f o r m u l a  [8 ,  p.  192] .  I t  f o l l o w s  from 
t h e  C a u c h y - B u n y a k o v s k i i  i n e q u a l i t y  [16] t h a t  M 2 = 4W = ~ 8KM. Using ( 2 . 3 )  t o  e x c l u d e  8K from 
t h i s  e x p r e s s i o n ,  we have MS - M 2 + 4EM e 0. A f t e r  t h i s  i n e q u a l i t y  i s  d i v i d e d  by M 2, i t  t a k e s  
t h e  form 

d'~-\M] ~ M" ( 2 . 4 )  

For any perturbation with E < 0, it follows from (2.4) that 

d ( ~ t )  M 2W(O) 
d--~ -M > O, -M "~ M (0) ---" 2~, (2.5) 

after which selection of X > 0 leads to the sought estimate of the increase in perturbation 

M(t) > M(O) exp (21t). ( 2 . 6 )  

The above c h o i c e  E < 0 and I > 0 i s  p o s s i b l e  by v i r t u e  o f  ( 2 . 1 )  and because  t h e  f i e l d s  
and u at the initial moment of time are given by the inequality (1.13). In fact, with al- 
lowance for (i.i0), (2.1), the inequality E < 0 means that the initial data (1.12) is chosen 
so that K(0) < IH*[. Then the initial data are used to calculate X ~ W(0)/M(0). If it 
turns out that I < 0, then in (1.12) we need to change the sign of one of the functions 
~~ or u~ in (1.12) and leave the sign of the other function unchanged. Thus, the con- 
struction ensures the existence of initial data corresponding to (2.6) with I > 0. It is 
understood that since we are not considering mathematical questions regarding the existence 
of solutions, inequality (2.6) has the character of an a priori estimate. 

The upper bound of i is evaluated by means of the Cauchy-Bunyakovskii inequality: 

<~ ]/2K(O)M(O)/M(O) = ]/2K(O)/M(O) < ]/--2H(0)/M(0)~ ( 2 . 7 )  

The last relation in (2.7) arises from the requirement E < 0. To refine estimate (2.7), 
it would be useful to examine a class of initial data, narrower than (1.12), that contains 
the function ~*(X) (2.1) and the constant k: 

~(x, o )=  %*(x), u(x, o )=  h(x, o )=  k%*(x) (2.8) 

:~For these data, the conditions E < 0 and i > 0 take the form 

which in turn leads to 

E = UM(O)/2 -[- H(0) < 0, k = ~, > 0, 

0 < k = E < ] / - -2H(0) /M(0) .  ( 2 . 9 )  

It is evident that the interval (2.9) of possible values of the increment X coincides with 
estimate (2.7), i.e., the latter gives the exact boundary of the interval of the increments. 

The largest increment Ima x in (2.7), (2.8) can be calculated by solving the variational 
problem of determining the maximum of the quantity I = ~ The allowable fields ~(x) 
should satisfy the conditions div~ = 0 in c0 • ~'n = 0 on ~T and [~.~] = 0 on F 0. This prob- 
lem is not solved here. We will instead restrict ourselves to two particular observations 
regarding it. 

i. If o = 0 and there is an unstable density discontinuity on F 0 (i.e., [p0]v'~ < 0), 
then Xma x + ~. This means that the problem is ill-conditioned, in accordance with Adamar's 
definition. In fact, in the ratio H/M, the numerator H contains a volume integral and a 
negative surface integral, while the denominator M contains only a volume integral. Choos- 
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ing the trial functions ~(x) to be rapidly oscillating along F 0 and rapidly decaying with 
increasing distance from F0, we obtain M + 0 at fixed H < 0. 

2. If on r 0 we have o = 0, [P0] = 0, then only continuous stratification remains and 
it follows from (2.1) and (i.13) that 

~ a x <  m~x (VP0. V~)/min Po. (2.10) 

A no tewor thy  f e a t u r e  of  the  r e s u l t i n g  i n s t a b i l i t y  e s t i m a t e  ( 2 . 6 )  i s  t he  f a c t  t h a t  t he  
method by which i t  was o b t a i n e d  i s  independen t  of  the  s p e c i f i c  form of  p o t e n t i a l  ene rgy .  
For ( 2 . 5 )  to  be v a l i d ,  i t  i s  n e c e s s a r y  on ly  t h a t  p e r t u r b a t i o n s  e x i s t  wi th  n e g a t i v e  ene rgy  
( 2 . 1 )  and t h a t  Eq. ( 2 . 3 )  be s a t i s f i e d .  The l a t t e r  p e r t a i n s  to  t he  f ami ly  of  r e l a t i o n s  f o r  
the  v i r i a l  and i s  s a t i s f i e d  f o r  many n o n d i s s i p a t i v e  mechanica l  systems [2, 4, 11, 17].  Such 
u n i v e r s a l i t y  of  e s t i m a t e  ( 2 . 5 )  makes i t  p o s s i b l e ,  w i thou t  changing i t s  form, to  c o n s i d e r  
t he  r o t a t i o n  of  a medium, i t s  c o m p r e s s i b i l i t y ,  and o t h e r  f a c t o r s .  Examples of  g e n e r a l i z a -  
t i o n s  a r e  g iven  below. 

3. I n s t a b i l i t y  of  a B a r o c l i n i c  Vor tex .  We w i l l  e x a m i n e - r o t a t i o n a l l y  symmetric motions 
of  an i n c o m p r e s s i b l e  f l u i d  in an ax i symmet r ic  v e s s e l  ~. In t he  c y l i n d r i c a l  c o o r d i n a t e  sys -  
tem ( r ,  z ,  ~ ) ,  t he  components of  the  v e l o c i t y  f i e l d  a r e  ( u l ,  u2, u s ) .  The p o t e n t i a l  of  the  
e x t e r n a l  body f o r c e s  r = r  z ) .  The d e n s i t y  f i e l d  p i s  c o n t i n u o u s .  Using the  n o t a t i o n  
p =-- (ru3) 2, ~ ~ i/2r 2, we write the equations of motion in the form 

D u : - - J - V P - - V ~ - - ~ V  ~, D ~ : O ,  D p : O ,  
P (3.1) 

l t l r  + - u  U2Z = 0 ,  D - - - ~ - +  u ' v ,  u = (ul, u2), V =  "~r' ' 

these equations being an example of the analogy between the effects of density stratifica- 
tion and rotation [13, Ch. 8]. The baroc!inic vortex whose stability is being studied is 
represented by the exact solution of (3.1) in the form 

u----- 0 ,  g = ~0(r, z) ,  p = p0(r, z) ,  p = po(r, z), (3 .2)  

where the fields P0, P0, and P0 are continuous together with their first derivatives and 
are connected by the relation 

VP0 + P0V ~ + Po~oV~ = 0. ( 3 . 3 )  

L i n e a r i z a t i o n  of  ( 3 . 1 )  f o r  the  s o l u t i o n  (3 .2 )  and i n t r o d u c t i o n  of  t he  f i e l d  of  Lagrangian  
d i sp l a c e me n t s  g (1 .11 )  lead  to  the  problem 

p0uu + m~j~j§ a p : 0, 

i 
+ - 7 - + ~ z = O '  u i = ~ u ,  

0~f 0P0~ 0 , 0qb 0P 0 
1;?iJ - -  Ox i OXj -7- "~x~ Oxj ) 

in T, ~ini = 0  on cot, ( 3 . 4 )  

where all of the vector indices take values of i and 2. The matrix mij is symmetric, which 
can be demonstrated after application of the operator rot to (3.3). The below energy inte- 
gral is valid for (3.4): 

E - - K + H = c o n s t ,  2K--~p0u#id% 2H~m~j~i~flz. ( 3 . 5 )  
T 

For t he  f u n c t i o n a l  M (2 . 2 )  (wi th  summation from 1 to  2) ,  we use ( 3 . 4 )  and ( 3 . 5 )  to  aga in  
o b t a i n  Eq. ~2 .3) .  A f t e r  t h i s ,  in  the  p r e s e n c e  of  p e r t u r b a t i o n s  wi th  H < 0, r e p e t i t i o n  of  
the  s t e p s  in Sec. 2 l eads  to  the  r e q u i r e d  e s t i m a t e  ( 2 . 5 ) .  Thus, wi th  c o n d i t i o n  ( 2 . 1 ) ,  baro-  
c l i n i c  v o r t e x  (3 . 2 )  i s  u n s t a b l e  and i t s  p e r t u r b a t i o n s  i n c r e a s e  e x p o n e n t i a l l y .  The e s t i m a t e  
of  the  inc rement  (2 .10 )  i s  r e p l a c e d  by 

~max < max ( - - m l , ~  --m~)/min p0 
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(m I and m 2 are eigenvalues of the matrix mij). A practical e=iteri~a of flow instability 
(3.2) is negativity of at least one of the numbers ml, m 2 in any part of ~. 

The requirement of smoothness of the fields ~0 and P0 (3.2) is not essential. We fol- 
low the same procedure as in Sec. 2 in examining baroclinie vortices with discontinuities 
to0] ~ 0 and [D0] ~ 0 on certain surfaces inside T an~ in allowing for surface tension. With 
condition (2.1) (and the corresponding expression for ~), this approach leads to the same 
estimate (2.6). 

The problem of the stability of a baroclinic circular vortex in the class of rotationally 
symmetrical perturbations was examined previously in connection with applications to atmo- 
spheric physics [18-21]. These studies also employed the direct Lyapunov method, while the 
functional M (2.2) was introduced in [21]. The overall result in [21] consisted of obtaining 
the estimate M > ct 4 (c being a constant). 

4. Instability of States of Rest of a CompressSble Flui d. We will examine three-dimen- 
sional adiabatic motions of an ideal compressible fluid located in the region �9 with the 
boundary ST. The motions are described by the solutions of the system of equations 

I 
D u = - - - p - - V P - - . V  ~,  Dp + p d i v u =  O, Ds : O, (4.1) 

augmented by the thermodynamic relations 

and the boundary conditions 

e -~ e(p, s), de ---- Tds --pd(l/p) (4.2) 

u.n  = 0 on 0~, ( 4 . 3 )  

where s, T, and e are the fields of entropy, temperature, and internal energy. The remain- 
ing notation is the same as was used in (i.i) and (1.2). For the solutions of (4.1)-(4.3), 
we have the energy integral 

E =  p + e ( p , s ) + ~  d ~ = e o n s L  ( 4 . 4 )  

We w i l l  s t u d y  t h e  p rob lem o f  t h e  s t a b i l i t y  o f  h y d r o s t a t i c  e q u i l i b r i u m  - t h e  e x a c t  s o l u -  
t i o n  o f  ( 4 . 1 ) - ( 4 . 3 )  o f  t h e  form 

u = o,  ~ = po(X), p = po(x), s = So(X), ( 4 . 5 )  

in which the equipotential surfaces of ~0, P0, so, and ~ coincide with one another. All 
of the fields (4.5) and their first derivatives are assumed to be continuous. Linearization 
of Eqs. (4.1) for solution (4.5) gives 

poUt = - - V P - - p V  ~ ,  s t + (u.v)s o = 0, ( 4 . 6 )  

Pt + (u'v)P0 + Po div u = 0 

(u ,  p,  p, and s a r e  p e r t u r b a t i o n s  o f  v e l o c i t y ,  p r e s s u r e ,  d e n s i t y ,  and e n t r o p y ) .  The boun-  
d a r y  c o n d i t i o n s  f o r  ( 4 . 6 )  have  t h e  same form as ( 6 . 3 ) .  I n t r o d u c t i o n  o f  t h e  f i e l d  o f  Lag ran -  
g i a n  d i s p l a c e m e n t s  g ( x ,  t )  ( g t  ~ u)  l e a d s  t o  t h e  r e p l a c e m e n t  o f  ( 4 . 3 )  and ( 4 . 6 )  by t h e  r e -  
l a t i o n s  [11] 

P 0 ~ u = - - V P - - P V ~ ,  s = - - ( % . V ) ~ , )  
P = - - ( ~ ' V )  Po- -pod ivg  l in T, ~.n : 0 on 0~. (4.7) 

The energy integral for (4.7) is 

E ~ K  q - H - t - A  = const, 

217 - -  y po.q'N~d'% g~ ~.~ 
V@Vp o 

Po ~,% ] , ( 4 . 8 )  

2 

[ at, p -c :p  + r 
Po% 

Here, K and N I are taken from (i.i0) and (1.13); ~ is the buoyancy frequency (Brunt-VasSila); 
c o is the speed of sound. The terms K, H, and A are interpreted as the kinetic, potential, 
and acoustic parts of the total energyE of small perturbations [22]. 
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Stability (4.5), at ~2 > 0, c02 > 0, eps > 0, is also one form of the Lagrangian theo- 
rem on the stability of the equilibrium of a mechanical system in the presence of a poten- 
tial energy minimum. Direct calculations can show that the first variation of potential 
energy from (4.4) for the state (4.5) is equal to zero, while the second variation coincides 
with ~ + A from (4.8). 

Now let there be a field of Lagrangian displacements ~*(X) for which 

H @ A = H* @ A* < 0 : a t :  g = %*(x). ( 4~  

In terms of the local properties of equilibrium (4.5), this means that at least one of the 
following three inequalities exists in some part of T: ~2 < 0, Co 2 < 0, eps < 0. The first 
of these inequalities corresponds to unstable stratification, while the last two reflect 
certain anomalous properties of the equation of state. 

For the functional M (2.2), we use (4.7)-(4.9) to obtain the analog of Eq. (2.3), M = 
4(K - ~ - A) = 8K - 4E. We then use (4.9) and reDeat the procedures in Sec. 2 to again ob- 
tain estimate (2.6). 

Application of the restraint of smoothness of the fields p0(x) and s0(x) is notessential. 
Consideration of condition (4.5) with discontinuities [P0] ~ 0 and [so] ~ 0 on certain sur- 
faces is carried out as in part 2 and leads to evaluation of (2.6). It should be noted that 
generalization of the results on the instability of a baroclinic vortex (Sec. 3) to the case 
of a compressible fluid also leads to (2.6). The corresponding formulation of the problem 
can be found in [20]. 

5. Instability of Elastic Bodies. The Lagrange theorem and its inversion are much 
more important in the theory of elasticity than in hydrodynamics. Let us prove the validity 
of estimate (2.6) for an elastic body, the linearized equations of motion of which will be 
written in the form [23] ac~ik 

P0~m = a ~  ' (5. l) 
a~; a~  

~ih = Eihlmelra, Zelm ~ -  ~x~  -}- ax t ' 

where ~ i s  t h e  L a g r a n g i a n  d i s p l a c e m e n t ;  Eiks i s  t h e  t e n s o r  o f  t h e  e l a s t i c  modu l i .  The gen-  
e r a l  form o f  H o o k e ' s  law i s  t a k e n  f o r  t h e  r e l a t i o n s h i p  be tween t h e  s t r e s s  t e n s o r  Oik and 
s t r a i n  t e n s o r  e l k .  The f o l l o w i n g  e n e r g y  r e l a t i o n  i s  v a l i d  f o r  ( 5 . 1 ) :  

E = K + 17, dE dt  -- J ~it~ 
o~ (5.2) 

from which it is evident that, for energy to be conserved, it is sufficient to require on 
the boundary of the body 8~ that either displacements be absent ~ = 0 or that perturbations 
of the force vector be zero aikn k = 0. 

Let property (2.1) be satisfied for H (5.2). Then, by virtue of the adopted boundary 
conditions, for the functional (2.2) we again obtain (2.3) and, thus, the estimate (2.6). 

It should be noted that an estimate showing that the functional W (2,2) increases linear 
ly with time was obtained for elastic bodies in [5, 6, 24]. 
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DEVELOPMENT OF VISCOSITY INSTABILITY IN A POROUS MEDIUM 

O. B. Bocharov and V. V. Kuznetsov UDC 532.546 

The interest in the problem of the stability of two-phase flows undergoing filtration 
is due mainly to the problem of maximizing the recovery of oil from underground when water 
or other agents which are immiscible with oil are pumped into the reservoir. When the ratio 
of the viscosities is large, the displacement of hydrocarbon liquids by water in a porous 
medium is essentially an unstable process. Instability of the displacement front leads to 
the formation of "tongues" of liquid which increase in size over time. The linear analysis 
of stability for piston-like displacement performed in[i] showed that the increase in the 
amplitude of the tongues is exponential in character, in [2], stability within the framework 
of a linear approximation was analyzed for the Musk~t-Leverett model with allowance for the 
erosion of the displacement front due to capillary forces. The growth of tongues after loss 
of stability was analyzed numerically without allowance for capillary forces in [3] for uni- 
form porous media and in [4] for microscopically nonuniform porousmedia. A detailed analy- 
sis of studies of viscosity instability in porous media was given in [5]. At the same time, there has 
been little study of the stage of nonlinear tongue growth with allowance for the two-phase char- 
acter of flow behind the displacement front. Here, within the framework of the Baclay-Lever- 
ett model, i.e., without allowance for capillary forces, we numerically study the structure 
of the flow region behind the displacement front in the unstable regime at the nonlinear 
stage of tongue growth. 

--Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No." 
2, pp. 116-120, March-April, 1989. Original article submitted June 9; 1987; revision sub- 

mitted December 8, 1987. 

276 0021-8944/89/3002-0276512.50 �9 1989 Plenum Publishing Corporation 


